skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Splinter, Jared"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract High-eccentricity gas giant planets serve as unique laboratories for studying the thermal and chemical properties of H/He-dominated atmospheres. One of the most extreme cases is HD 80606 b—a hot Jupiter orbiting a Sun-like star with an eccentricity of 0.93—which experiences an increase in incident flux of nearly 3 orders of magnitude as the star–planet separation decreases from 0.88 au at apoastron to 0.03 au at periastron. We observed the planet’s periastron passage using JWST’s NIRSpec/G395H instrument (2.8–5.2μm) during a 21 hr window centered on the eclipse. We find that, as the planet passes through periastron, its emission spectrum transitions from a featureless blackbody to one in which CO, CH4, and H2O absorption features are visible. We detect CH4during postperiapse phases at 4.1–10.7σdepending on the phase and on whether a flux offset is included to account for NRS1 detector systematics. Following periapse, H2O and CO are also detected at 4.2–5.5σand 3.7–4.4σ, respectively. Furthermore, we rule out the presence of a strong temperature inversion near the IR photosphere based on the lack of obvious emission features throughout the observing window. General circulation models had predicted an inversion during periapse passage. Our study demonstrates the feasibility of studying hot Jupiter atmospheres using partial phase curves obtained with NIRSpec/G395H. 
    more » « less
    Free, publicly-accessible full text available July 23, 2026